

Giuseppe Pellizzi Prize CLUB, BOLOGNA

Giuseppe Pellizzi Prize 2024

33rd Members' Meeting of the Club of Bolog**na**November 10, 2024

Towards a sustainable use of plant protection products in orchards: Implementation of canopy-adapted spray technology and new developments for spray efficiency evaluation

LU XUN – lu.xun_echo@qq.com

LU XUN 1994-02-01 Hubei, China

Education:

- 2012.9—2016.6 Bachelor Degree,
 Mechanical Design Manufacture and Automation Major,
 Wuhan Institute of Technology
- 2016.9—2019.6 Master Degree, Vehicle Engineering, South China Agricultural University
- 2019.9—2024.3 PhD, Agricultural Engineering, Universitat Politècnica de Catalunya

Personal honors:

☐ Scholarship for PhD student under the State Scholarship Fund by the China Scholarship Council (2019.9-2023.9)

Research field: Precision pesticide application in orchards

Why orchards?

Drift losses

Evaporation losses

On the intended target

Ground losses

☐ Off-target losses can reach 70%

(Balsari et al., 2002) (Miranda-Fuentes et al., 2019)

Difficulties for spraying applications in orchards

Different spraying applications

Conventional application

VS

Canopy-adapted application

Precise application

Doruchowski, G. 2018

- ☐ When specific to crops and sprayers, the potential improvement in spray quality of the canopy-adapted applications?
- ☐ To what extent the PPPs can be saved in orchards when the canopy-adapted applications were introduced?

Developed variable rate sprayer

Experimental setup

Variety: Royal Gala

Training method: fruit wall system

Parameters	Growth stage				
- Farameters	BBCH72	BBCH99			
Row distance (m)	4.15	4.15			
Canopy height (m)	2.00 ± 0.19	2.06 ± 0.33			
Canopy width (m)	0.89 ± 0.1	1.01 ± 0.10			
TRV (m³ ha-¹)	4289	5013			
LWA (m² ha-1)	9639	9927			

Working parameters of three treatments

	Parameters					
Spraying application	Vol. (L ha ⁻¹)	Vel. (km h ⁻¹)	Nozzle (No.)	Nozzle (type)	Pressure (bar)	Droplet size*
Hardi tower sprayer (REF)	883	5.5	10+8	ATR Orange/Red	14	VF
Fede axial-fan sprayer (BMP)	775	5.0	10	TVI Blue	15	VC
Fede tower sprayer (PRE)	517 (72) / 492 (99)	5.0	20	IDK90-015	4-14	VC
	_	` X				·

 $0.16 L/m^3 TRV$

 $0.1 L/m^3 TRV$

12% reduction

43% reduction

Spray drift trials following the ISO 22866:2005(E)

Canopy volume and corresponding output spray rate

Results

Ground drift profiles

Airborne drift distribution at BBCH72

Sampling distance

Airborne drift distribution at BBCH99

application and a higher reduction of 43% with the precise application.
reduce the spray volume and dose: a reduction of 12% with the optimized
Compared to the conventional application, the canopy-adapted applications can

☐ There are **great difficulties** to fully **follow the ISO 22866** to quantify the spray drift because of the uncontrollable weather conditions.

☐ The canopy-adapted applications can significantly reduce the ground drift (23.3–70.9% reduction) at both growth stages BBCH 72 and 99 compared to the conventional application. The conventional axial-fan sprayer have a higher risk for ground drift, which may due to its poor target ability.

☐ The airborne drift can also be significantly mitigated using the canopyadapted applications (26.2–84.6% reduction), and the **precision application** showed a **remarkable advantage** in drift reduction **for the sparse canopy** with low vegetation density.

Thanks for your attention

